PRELIMINARY

APR 2024

ZES302 - Radiation Hardened Point-of-Load (PoL)

Enabling Advanced Commercial-Off-The-Shelf (COTS) to 'Space-Grade'

Description

ZES302, Point-of-Load (PoL) is a radiationhardened high efficiency synchronous buck regulator with integrated power transistors that can deliver up to 3A of output current. This single chip operates over an input voltage of 3V to 5.5V and provides a regulated output voltage that is externally adjustable from 0.8V to PV_{IN}-0.8V.

ZES's PoL based on proprietary technology (patent pending) offers an unprecedented means to supply power to COTS. Specifically, ZES's PoL embodies a unique control mode, hence featuring optimized power efficiency over a wide loading range, zero current switching, ultra-fast transient response, and over current protection. Further, multiple of ZES's PoLs can be placed in parallel, hence exhibiting innate redundancy.

PoL is realized with Radiation Hardening By Design (RHBD) approach, hence highly tolerant to various radiation effects in space.

High integration makes PoL an ideal candidate to supply DC power to advanced ICs in space.

Applications

- Battery Operated Equipment
- Regulated Voltage Source
- Board Level Local Power Conversion
- Embedded systems

Features

- Integrated power transistors
- 3A maximum output current
- Optimized high power efficiency, >92% peak
- 'Plug-and-play' parallel operation with redundancy
- Configurable Soft-Start
- Innate over-current protection
- Power-good output voltage monitor
- Compatible with small size inductor Fast transient
- Full Mil-temp range operation (T_A = -55°C to +125°C)
- Qualified for Space Enhanced Plastic (SEP)
- Space qualified technology
- Radiation Hardened by Design (RHBD)
- ITAR free

Electrical Performance

Input Voltage	3V to 5.5V
Output Voltage	0.8V to PV _{IN} -0.8V
Maximum Output Current	3A
Switching Frequency	≤2MHz
Peak Power Efficiency	>92%
Output Ripple (CCM)	<10mVpp

Radiation Performance (Cyclotron Verified)

TID	100 Krad (Si)
SEL	90 MeV-cm ² /mg
SEFI	60 MeV-cm ² /mg
SEU	60 MeV-cm ² /mg
Ion Fluence	Up to 10 ⁷ /cm ²

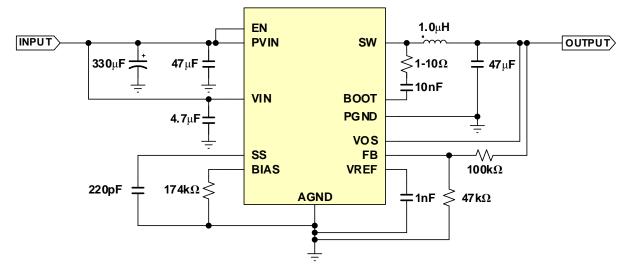
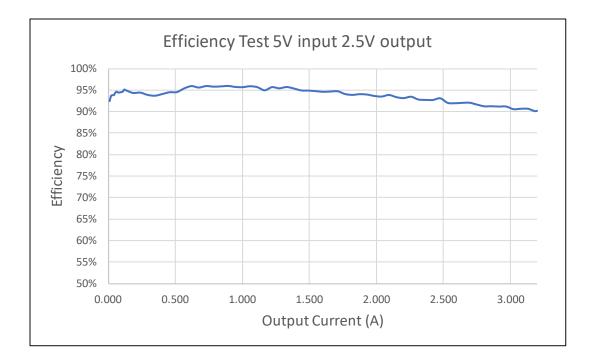
Ordering Information

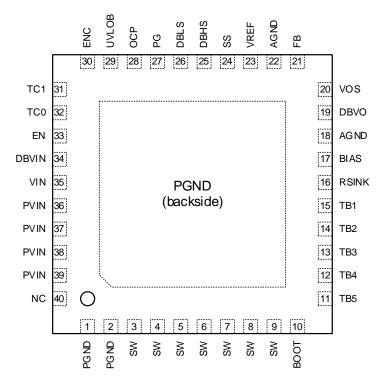
Part No.	Grade	Form Factor	Size
ZES302POLFQ-EP	Space Plastic Flight Model	QFN40L	5 mm × 5 mm
ZES302POLGQ-EP	Ground Model*	QFN40L	5 mm × 5 mm
ZES302POLGEV-EP	Space Plastic Evaluation Board*	PCB	100 mm x 100mm

For price, delivery, and ordering information please contact info@zero-errorsystems.com.

* These units are intended for engineering evaluation only. These units are not suitable for qualification, production, radiation testing or flight use. Parts are not warranted for performance over the full specified temperature range of -55°C to 125°C or operating life.

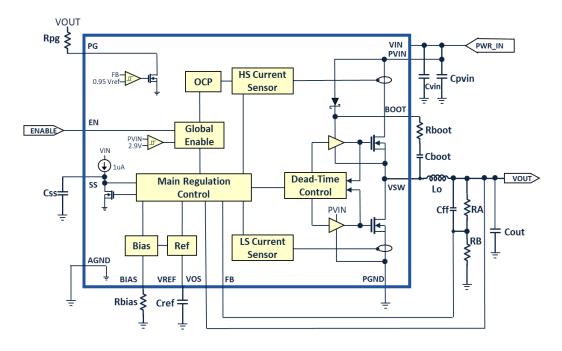
Typical Application


Figure 1 Simplified typical application schematic for V_{OUT} of 2.5V

Efficiency

2.1 Pin Configuration



2.2 Pin Description Table

Pin	Name	Туре	Description
1-2, EP	PGND	Ground	Power Ground Pin
3-9	SW	Output	Switching Node Output pin
10	BOOT	Power	Bootstrap Capacitor pin
11-15	TB5TB1 [*] (MSBLSB)	Analog I/O	VREF Trimming pins
16	RSINK [*]	Analog I/O	Sink Resistor pin
17	BIAS*	Analog I/O	Bias Resistor pin
18, 22	AGND	GND	Analog Common Ground pin
20	VOS	Input	VOUT sense
21	FB	Input	Feedback Input pin
23	VREF	Output	Reference Voltage Output pin
24	SS	Analog I/O	Soft Start pin
27	PG	Output	Power Good pin
28	OCP*	Debug	Over Current Protect Debug pin
29	UVLOB*	Debug	Under Voltage Lockout Debug pin
31-32	TC1TC2 [*]	Analog I/O	Current Sensing Trimming pin
33	EN	Input	Enable Input pin
35	VIN	Power	Analog Supply Voltage pin.
36-39	PVIN	Power	Power Supply
19,25,26,30,34,40	NC	Analog Out	Analog Output Debug Pin

^{*} These pins will be removed in the future.

3.1 Functional Block Diagram

PRELIMINARY

3.2 Integrated Circuit Operation:

ZES302 is a synchronous DCDC buck regulator integrated circuit. The control system embodies both a voltage-mode hysteretic control (VMHC) and current-mode hysteretic control (CMHC). The first advantage of this design is that the buck converter can operate in both DCM and CCM and thus provide excellent efficiency at both light and heavy loads. The second advantage is that unlike traditional current-mode PWM controller, the linear regulation in our design only works when the buck converter enters heavy load. Thus, the error amplifier compensation network in CMHC can be easily designed since the output pole at heavy load is at much higher frequency and can be cancelled easily with an on-chip zero, leading to a system that is close to a single pole system with much higher bandwidth. This also gives rise to fast transient responses. Besides, the proposed design achieves a quasifixed switching frequency to ensure predictable EMI performance without any clock generator.

3.3 Pin Functions

AGND: Analog GND pin(s). Internal analog circuit blocks ground pin and the IC output voltage negative terminal for the Cout and RB output sensing resistor.

BIAS: Bias reference Pin. A resistor is connected here to ground to provide the internal analog block reference current of 500nA. A 174k ohm resistor is the recommended value. Pin will be removed in the future versions of this IC.

VREF: Voltage Reference Pin is the internal comparator input pin. The voltage of 0.8V is set internally. a 100nF capacitor is recommended for Cref.

FB: Feedback Pin Connect a resistor from FB to VOUT and FB to GND to adjust the output voltage in accordance with the following equation.

$$V_{OUT} = V_{REF} \left(1 + \frac{R_A}{R_B} \right)$$

 $\begin{array}{l} V_{\text{OUT}} = \text{Output voltage,} \\ V_{\text{REF}} = \text{Reference voltage (0.8V typical)} \\ R_{\text{A}} = \text{Top divider resistor, and} \\ R_{\text{B}} = \text{Bottom divider resistor.} \end{array}$

VOS: VOut sense Pin, an internal divider is connected to this pin for the Main Regulation Control circuit to measure the Vout voltage.

PGND: Power Ground Pin is the return path of the internal power transistor synchronous switch. Please provide a large continuous PCB area for this pin and connect the Cout capacitor terminal and CPVIN Capacitor nearest to this pin(s).

VSW: Switching Voltage Output Pin: The switching internal power transistors output pin. Connect this pin(s) to the inductor with a wide trace.

BOOT: Bootstrap Pin: A series resistor and capacitor is connected to this pin and VSW. This pin provides the required drive voltage for the power transistor switch. A capacitor of 10nF to 100nF and a series resistor of 1 Ohm to 10 ohms are recommended.

PVIN: Power Voltage Input pin. This pin is the input terminal for the internal high side transistor switch. Please provide a large area for this pin and connect the CVIN Capacitor to this pin.

VIN: Analog Voltage input pin. Most of the Analog circuitry is connected to this pin. A decoupling capacitor (CVIN) of 4.7uF is recommended to be connected to this pin and ground.

PG: Power Good Pin. This pin has an open drain Mosfet transistor. The pin will remain low until 0.95 VREF is detected at the FB pin. A 100K resistor is recommended for the pull up resistor (Rpg).

EN: ENABLE Pin. This pin enables the operation of the regulator typically this pin is connected to VIN. The threshold can be adjusted by a resistor divider connected to VIN and GND. Typical enable voltage is 0.8V lower than 0.6V the DCDC is in shutdown mode.

SS: SOFT START Pin. This pin enables the soft start operation of the regulator. A 220pF capacitor (Css) is typically used.

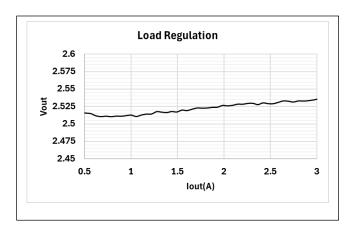
PRELIMINARY

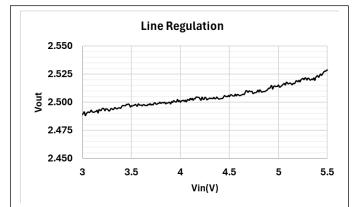
3.1 Maximum Ratings

Absolute maximum ratings are limits beyond which damage to the device may occur. Exposure to absolute rating conditions for extended periods may affect device reliability. Functional operation of the device at these conditions is not implied.

Table 1 Absolute maximum ratings

Parameter	Min	Мах	Unit
PVIN	- 0.3	+ 5.5	V
SW	- 0.3	+ 5.5	V
PG	- 0.3	+ 5.5	V
VIN	- 0.3	+ 5.5	V
Signal pins [†]	- 0.3	+ 0.3	V
Storage temperature T _{STG}	-55	+150	°C
Operating Junction Temperature T _J			°C
Thermal resistance junction-case			°C/W

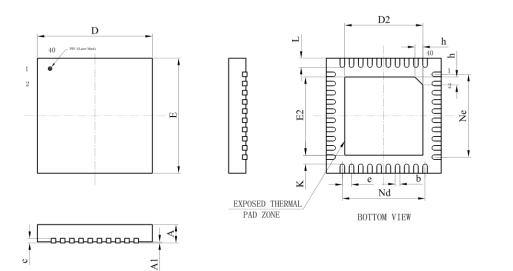

3.1 ESD Ratings


Parameter	Test Conditions	Value	Unit
	Human Body Model	± 2000	V
ESD Susceptibility	Charge Device Model	± 1000	V
	Machine Model	± 200	V

4 Electrical Characteristics

Typical values correspond to $T_J = 25C$. $PV_{IN} = V_{IN} = 5V$, $V_{OUT} = 2.5V$, $L_O = 1.0\mu H$, $C_O = 47\mu F$ unless otherwise specified.

	Parameter	Test Conditions	Min	Тур	Max	Unit	
	Supply Specifications						
1	Input Voltage PV _{IN}		3.0	5.0	5.5	V	
2	Supply Voltage VIN			PVIN		V	
3	Quiescent Current Iq			55		μA	
4	Shutdown Current			40		μA	
5	Enable Pin Voltage		0.8		Vin	V	
6	Under Voltage Lockout						
	Rising Threshold			2.9		V	
	Falling Threshold			2.7		V	
	Output Specifications	· · · · · · · · · · · · · · · · · · ·					
7	Output Voltage V _{OUT}		0.8		V _{IN} – 0.8	V	
8	Output Current IOUT				3	А	
9	Load Regulation				2	%Vout	
10	Line Regulation				2	%Vout	
11	Reference Voltage			0.8		V	
12	Output Ripple Voltage	$V_{IN} = 5V, V_{OUT} = 2.5V, I_{OUT} = 1mA$		24		mVpp	
		V _{IN} = 5V, V _{OUT} = 2.5V, I _{OUT} = 0.1A		6		mVpp	
		V _{IN} = 5V, V _{OUT} = 2.5V, I _{OUT} = 1A		6		mVpp	
13	High-side FET RDSON			130		mΩ	
14	Low-side FET RDSON			70		mΩ	
	Power Good Signal		-				
15	Falling Threshold	FB as a % of V _{REF}		95		%	
18	Output Efficiency	V _{IN} = 5V, V _{OUT} = 2.5V, I _{OUT} = 1mA		70		%	
		$V_{IN} = 5V, V_{OUT} = 2.5V, I_{OUT} = 0.1A$		92		%	
		$V_{IN} = 5V, V_{OUT} = 2.5V, I_{OUT} = 1A$		93		%	



5 Package Information

Package Outline

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
A1		0.02	0.05	
b	0.15	0.20	0.25	
с	0.18	0.20	0.25	
D	4.90	5.00	5.10	
D2	3.30	3.40	3.50	
е	0.40BSC			
Nd	3	60BSC		
Е	4.90	5.00	5.10	
E2	3.30	3.40	3.50	
Ne	3	60BSC		
L	0.35	0.40	0.45	
K	0.20			
h	0.30	0.35	0.40	
L/F载体尺寸 (mil)	150*150			

PRELIMINARY

Tape and Reel Information

6 Revision History

Version No.	Notes	Date
V0.0.65	Preliminary version	Mar. 2024
V0.0.7	Ordering information updates	Apr. 2024

Document Changes

- 1. Update Application
- 2. Update Specification
- 3. Explanation of external parts

IMPORTANT NOTICE AND DISCLAIMER

ZES PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with ZES products. You are solely responsible for (1) selecting the appropriate ZES products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. ZES grants you permission to use these resources only for development of an application that uses the ZES products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other ZES intellectual property right or to any third-party intellectual property right. ZES disclaims responsibility for, and you will fully indemnify ZES and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

ZES' products are provided subject to ZES' Terms of Sale or other applicable terms available either on zeroerrorsystems.com or provided in conjunction with such ZES products. ZES' provision of these resources does not expand or otherwise alter ZES' applicable warranties or warranty disclaimers for ZES products. ZES objects to and rejects any additional or different terms you may have proposed.

Copyright © 2024, Zero-Error Systems Pte. Ltd